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※Method

※Conclusion

In response to the rapid growth of energy consumption, renewable energy harvesters have emerged as a
powerful technique for providing sustainable energy and achieving carbon neutrality, including turbines,
hydrofoils, flapping foils, flow-induced vibrations (FIV) energy harvesters, etc.

FSI problems are governed by series of coupled partial differential equations (PDEs), which are temporal-
spatial nonlinearity.
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(a) Overview of the neural
solver architecture, where
‘Fluid’ and ‘solid’ denote the
physical governing PDEs, ‘NN’
represents neural network; (b)
The detailed components in
one-step neural FSI solver.

☞ The harvesters requires effective simulation at design and fast optimization in operation. However,
classical computational fluid dynamics (CFD)-based solvers are too expensive.

☞ The ever-increasing data availability and rapid developments in deep learning (DL) have opened new
avenues to tackle these challenges.

☞ A fully differentiable programming
framework for simulating harvesters
based on JAX is established. Different DL
models can be integrated and optimized
within the neural solver in an end-to-end
manner.

☞ The FIV energy harvester is simulated by
this framework to demonstrate the merit
and potential.
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☞ Forecasting in time sequence

☞ Extrapolating in parameter space
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Ø Integrating traditional numerical solvers into deep neural networks (DNN) to enable effective data-driven
modeling.

Ø Hybrid framework can accurately predict the structural responses and flow patterns (including parameters
space).

Ø Solving the complex and expensive FSI problems is much faster (20% for 8× coarse).
Ø The error accumulation can be partially eliminated.
Ø Get rid of the dependency on grid size and quality.
Ø It can be used to design and optimize the energy harvester in a very fast way.

☞ Model evaluation
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